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Abstract

The study of the viscometric results obtained with a great number of worm-like polymer–solvent systems showed that plotting the
variation of the logarithm of the intrinsic viscosity versus the logarithm of the molecular mass of these polymers we observe two crossover
points. The first crossover point corresponds to a molecular mass equal to the molecular mass of one Kuhn statistical segment. The second
crossover point appears when we reach the complete excluded volume behavior and depends on the quality of the solvent. These two
crossover points delimit three molecular mass regions. We indicate the methods to obtain the statistical segment length of worm-like
polymers in each of those molecular mass regions. A new method is proposed in order to obtain the statistical segment length of the
worm-like polymers based on the Han’s equation (Han CC. Polymer 1979; 20:1083) derived from the blob theory.q 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

In the last years, great interest has been manifested in the
study of synthetic rigid polymers, due mainly to their
mechanical properties. The study of rod-like or worm-like
polymers in solution has as main purpose, the determination
of their statistical segment length, the value of which deter-
mines their rigidity. The determination of the value of the
statistical segment length of a worm-like polymer is often
based on the relation between the intrinsic viscosity and the
molecular mass of a series of fractions of this polymer. A
certain number of procedures based on the relation between
intrinsic viscosity and molecular mass has been proposed
for worm-like polymers. The aim of this work is to explore
the domains of molecular mass or of the number of the
statistical segments in which we can use these methods. In
the case of worm-like polymers, three domains of molecular
mass are well delimited because for these polymers we
observe two well-determined crossover points in the
variation of their solution dimensions as a function of
their molecular mass. More precisely, in the Mark–

Houwink–Sakurada (MHS) representation we observe two
well-defined crossover points in which we have a variation
of the exponent of this equation. Thus we distinguish three
regions of molecular mass: region I, below the first cross-
over point; region II, between the fist and the second cross-
over point and region III, above the second crossover point.

In this article we also propose a new equation relating the
intrinsic viscosity to the molecular mass of worm-like poly-
mers, from which we can obtain the Kuhn statistical
segment length of these polymers in the region of molecular
mass in which we have the appearance of the power law
(region III). This equation has been obtained from a combi-
nation of relations derived from the blob theory and the two-
parameter theory. This combination has been already used
in order to obtain a relation that permits the determination of
the unperturbed dimensions parameter and in the following
statistical segment length of rigid polymers [1]. The relation
proposed now is easier to be applied and gives the statistical
segment length directly.

In all the relations proposed by us, as well as in the rela-
tion which will be proposed here, we use a value for the
parameterF of Flory, which depends on the quality of the
solvent in which the worm-like polymers are dissolved; this
value ofF expresses the draining effect.
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2. Results and discussion

2.1. Region I (molecular mass below the first crossover
point)

In this region a chain of worm-like polymer consists of a
relatively low number of monomer units. The number of
these units is lower than the number necessary in order to
have one Kuhn statistical segment and consequently the
chain presents the conformation of a long straight cylinder.
In this region, relations between the intrinsic viscosity, [h ],
and the molecular mass are proposed by Kirkwood and Auer

[2], Yamakawa [3] and Doi and Edwards [4]. The statistical
segment length in this region can be obtained using the
Yamakawa–Fujii method [5]. Other methods, relating the
viscosity to the molecular mass, which will be examined in
the following, cannot be applied in this region.

As concerns the exponent of the MHS representation, for
a rod-like cylinder, the expected value, according to the
rigid rod model proposed by Kirkwood and Auer [2] and
treated subsequently by Doi and Edwards [4], should lie
between 1.6 and 1.7. In Fig. 1 we give the relation between
log [h ] and logM for three worm-like polymer–solvent
systems and we observe that the slopes of the straight
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Nomenclature

a Mark–Houwink–Sakurada exponent
A Kuhn statistical segment length (given in A˚ )
B Exponent of Han’s equation�B� 3n 2 1:5�
C Parameter of Han’s equation�C � 4�1 2 n��2 2 n�=��2n 1 1��n 1 1���
K Mark–Houwink–Sakurada constant
Ku Unperturbed dimensions parameter (given in ml g21)
M 0

c Molecular mass at the onset of power law
ML Molecular weight of the chain per unit length
ms Molecular mass of Kuhn statistical segment
N Number of Kuhn statistical segments
Nc Number of Kuhn statistical segments at the onset of excluded volume behavior
N 0c Number of Kuhn statistical segments at the onset of power law
Greeks
ah Viscometric expansion factor
F Flory’s parameter (given in c.g.s.)
[h ] Intrinsic viscosity (given in ml g21)
n Excluded volume index

Fig. 1. Log–log plot of [h ] (in ml g21) versusM for the systems: (A) PPPhTPhA–H2SO4 [8]; (B) PHIC–toluene (258C) [9]; and (C) Schizophyllane–H2O [10].
The arrows correspond to the molecular mass of one Kuhn statistical segment. For arrow a see text.



lines, below the crossover point, are in accordance with the
rigid rod model. The polymers in Fig. 1 are: (a) poly(p-
phenylene terephthalamide) (PPPhTPhA) [8]; (b) poly(helyx
isocyanate) (PHIC) [9]; (c) native sample of polysaccharide
Schizophyllum commune(schizophyllan) [10].

2.2. First crossover point

In a recent article [1] we have shown that the chain of a
worm-like polymer at the onset of excluded volume beha-
vior consists of one Kuhn statistical segment. This result is
obtained using the following equation, proposed by Han [6],
which is derived from the blob theory

a3
h � C

N
Nc

� �3n21:5

�1�

In this equationah is the viscometric expansion factor,n
the excluded volume index (3n 2 1� a wherea is the expo-
nent of the MHS equation), C is equal to�4�1 2 n��2 2 n��=
��2n 1 1��n 1 1��;N the number of Kuhn statistical segments
of the chain andNc the characteristic number of Kuhn statis-
tical segments contained in a blob or the number of Kuhn
statistical segments at the onset of excluded volume beha-
vior. As we have already mentioned, we have obtained that
Nc � 1 for a great number of worm-like polymers using the
viscometric results obtained in the molecular mass domain
where we have a complete excluded volume behavior
(region III as described in the following). The value ofa3

h

is the ratio�h�=KuM
1=2 whereKu is the unperturbed dimen-

sions parameter obtained also in the molecular mass region
where the complete excluded volume behavior is mani-
fested. This result�Nc � 1 at the appearance of excluded
volume behavior) is in accordance with the predictions of
the Yamakawa and Stockmayer theory [7].

In Fig. 1 we give the MHS representation, as we have
already mentioned, for three worm-like polymers and the
arrows indicate the molecular mass corresponding to one
Kuhn statistical segment of these worm-like polymers. We
can observe that the well-defined crossover points lie very
close to the molecular masses indicated by the arrows. More
precisely, for the system PHIC–Tol. (258C) we have for the
Kuhn statistical segment length,A, a value equal to 740 A˚

and a molecular mass per unit length,ML, equal to
74 Da Å21 consequently we obtain for the statistical
segment a molecular mass,ms, equal to 54 760 which is
indicated by the arrow in Fig. 1 (curve B). In other words,
the observed first crossover point in the MHS representation
corresponds to the transition from a rod-like conformation
to a worm-like conformation.

In the case of flexible polymers, on the contrary, the
number of Kuhn statistical segments contained in a blob
depends on the quality of the solvent and tends to infinity
when we approach the theta solvent�a� 0:5� [11]. The
value Nc � 1; is observed for the flexible polymers only
when these polymers are dissolved in a very good solvent
�a! 0:8� [11]. This difference between the two classes of
polymers could be understood if we consider that all
solvents behave as good solvents for the worm-like poly-
mers, when the chains of these polymers consist of a low
number of monomer units or when the molecular mass of
these polymers is lower than the molecular mass of one
Kuhn statistical segment (below the first crossover point).

Another difference between the worm-like polymers and
the flexible polymers is seen in the manner with which we
approach the power law in the MHS representation. In the
case of worm-like polymers the approach takes place from
below, i.e. the [h ] values in the low molecular mass region
are lower than those predicted by the power law or by the
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Table 1
Exponent of the MHS equation,a; Kuhn statistical segment length,A, mass per unit lengthML, mass at the onset of complete excluded volume behaviorM 0

c and
characteristic number of Kuhn statistical segments at the onset of complete excluded volume behavior (second crossover point)N 0c; for 13 worm-like polymer–
solvent systems

Number Systema a A (Å) ML (Da/Å) M 0
c N 0c References

1 PSi–THF 0.56 75 63 28 000 6 [23]
2 PNIB–H2SO4 0.64 156 25 42 000 11 [24]
3 CTDC–NMP 0.66 156 108 195 000 11.5 [22,25]
4 PPDP–EPCH 0.66 38 28.5 16 000 14.5 [21]
5 PPDP–m-cres. 0.675 60 28.5 27 000 16 [21]
6 PMDI–THF 0.68 65 108 100 000 14 [26]
7 PPSQ–benz. 0.7 123 103 215 000 17 [27,28]
8 CTA–DMAc 0.7 140 58 162 000 20 [29]
9 PTDP–TFE 0.73 93 28.5 73 000 27.5 [30]
10 PTDP–m-cres. 0.74 105 28.5 82 000 27 [30]
11 PHIC– hex. 0.77 708 71 2 100 000 42 [31]
12 Polycarbonate–met.Ch 0.78 53 21.7 63 000 55 [32]
13 Nitrocellulose–Ace 0.79 334 57 1 300 000 68 [33,34]

a The polymers are: (1) poly(methylphenyl silane), (2) poly(naphthoylene imidobenzimidazole), (3) cellulose tris[(3,5-dimethylphenyl)carbamate], (4), (5)
poly(phthaloyl-trans-2,5-dimethylpiperazine), (6) poly(monodecyl itaconate), (7) poly(phenylsilsesquioxane), (8) cellulose triacetate, (9), (10) poly(terephtha-
loyl-trans-2,5-dimethylpiperazine) and (11) poly(hexyl isocyanate).



MHS representation above the first crossover point (Fig. 1),
while in the case of flexible polymers the approach takes
place from above [12,13] i.e. the [h ] values in the low
molecular mass region are higher than those predicted by
the power law.

2.3. Region II (molecular mass between the first and the
second crossover points)

In this region of molecular masses the slope in the
representation of log[h ] versus logM becomes lower
than 1.6 or 1.7 and in certain cases decreases progres-
sively as we approach the second crossover point or as
we approach the beginning of the power law. Never-
theless, in the case of worm-like polymers, contrary of
what we observe in the case of flexible polymers, we can
obtain a straight line in a relatively large domain of
molecular masses in the MHS representation. The values
of the exponent of the viscometric laws obtained in the
region between the two crossover points lie between 1.2
and 0.8.

The statistical segment length in this region can be deter-
mined using the Yamakawa–Fujii method [5] or the repre-
sentation of viscometric results according to the equation of
Bushin et al. [14] and Bohdanecky [15]. A great number of
articles have appeared concerning the determination of the
statistical segment length of the worm-like polymers using
the above two methods.

We have shown [13,16] that in this same region of mole-
cular masses we can use the Dondos–Benoıˆt (DB) equation
[17], which originally has been proposed for the determina-
tion of the unperturbed dimensions parameter,Ku , of flex-
ible polymers. The value ofKu is obtained from the slope of
the straight line obtained plotting [h ]21 as a function of
M21/2 according to the following DB equation

�h�21 � 2A2 1 K21
u M21=2 �2�

From the value ofKu we obtain the Kuhn statistical segment
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Fig. 2. Variation of 1=�h� versus 1=M1=2 (DB) representation, Eq. (2), for
the systems: (A) poly(phenylhydroquinone-co-terephthalic acid)–mixed
solvent [20]; and (B) Schizophyllane–H2O [10].

Fig. 3. Log–log plot of [h ] (in ml g21) versusM for the systems: (A) PPDP–m-cresol [21]; and (B) CTDC–NMP [22].



length,A, from the relation,

A� Ku

F

� �2=3

ML �3�

in which F is the Flory’s parameter andML the mass per
unit length.

In the case of worm-like polymers the value ofF varies
with the quality of the solvent, as it is expressed by the
exponent of the MHS equationa; according to the following
relation [13]

F � 0:52× 1023a22:32 �4�
The above equation obtained empirically, expresses the

influence of the draining effect on the value of theF para-
meter and it is theoretically justified [18,19].

In Fig. 2 we present the application of Eq. (2) to two
worm-like polymer–solvent systems which we have not
studied in our previous works with this method. The systems
are: poly(phenylhydroquinone-co-terephthalic acid)-mixed
solvent (o-dichlorobenzene,p-chlorephenol) (curve A) [20]
and schizophyllane-H2O (curve B) [10]. From the slope of
curve a we obtain aKu value equal to 0.77 ml g21 and with a
value ofF equal to 0:71× 1023 (from Eq. (4) witha� 0:87�
andML � 24:53Da �A21

; we obtain from Eq. (3)A� 120 �A:

The values proposed in the article from which we have

taken the viscometric results [20] are:A� 120 �A (Yama-
kawa–Fujii method) andA� 122 �A (Bohdanecky method).
For the schizophyllane, with the viscometric results
obtained for the fractions of higher molecular mass values
we obtainA� 2:900 �A (Fig. 2, curve B) while the authors
of the work from which the viscometric results are taken
[10] give for the Kuhn statistical segment a value of 4.000 A˚

using the Yamakawa–Fujii method. The value obtained for
the molecular mass of one Kuhn statistical segmentms, for
the schizophyllane, withA� 4:000 �A is equal to 900.000,
indicated in Fig. 1 by the arrow (curve C) and this value is
higher than the crossover point. With the value ofA�
2:900 �A obtained, as we have mentioned above, for the
same polymer using the DB equation, we obtainms �
623:000; and this value is closer to the crossover point
observed for this polymer (Fig. 1, curve C, arrow a).

2.4. Second crossover point

In this crossover point we have a transition from a non-
complete excluded volume behavior to a complete excluded
volume behavior. In the molecular mass region above this
point we have a good linearity between log[h ] and logM, as
in the case of flexible polymers (power law). In Fig. 3 we
present the variation of log[h ] versus logM for two worm-
like polymer–solvent systems(PPDP–m-cresol [21],
CTDC–NMP [22]), and we see that the crossover point
can be determined with relatively good precision.

We have shown [11] that in the case of flexible polymers,
the number of Kuhn statistical segments,N 0c; at this cross-
over point, for a given polymer, depends on the quality of
the solvent and thatN 0c of different polymers is the same if
the polymers are dissolved in solvents of the same quality.
The quality of the solvents is expressed by the exponenta of
the MHS equation as it is determined in the molecular mass
region that lies above this crossover point (region of power
law).

Treating the viscometric results of a great number of
worm-like polymer–solvent systems, which we found in
the literature, we have observed the same behavior for
these polymers as for flexible polymers. More precisely,
the relation between the characteristic number,N 0c; and a
is the same for the two classes of polymers. In Fig. 4 we
present the variation ofN 0c as a function ofa for 13 worm-
like polymer–solvent systems. The determination of the
Kuhn statistical number at the crossover point is less precise
than the determination of the exponent of the MHS equation
and this is indicated by the error bars in Fig. 4. The crosses
in the same figure indicate points obtained with three flex-
ible polymer–solvent systems [11]. The curve of Fig. 4 is
expressed by the following equation

N 0c � 455^ �50�a8:8�^0:5� �5�
and a similar equation was found in the case of flexible
polymers [11]. Let us indicate that the number of Kuhn
statistical segments at the crossover pointN 0c; is obtained
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Fig. 4. Relation between the characteristic numberN 0c and the exponenta of
the MHS equation for 13 worm-like polymer–solvent systems. The
numbers correspond to the systems given in Table 1.



by dividing the molecular mass corresponding to this point,
M 0

c; by the molecular mass of the Kuhn statistical segment
ms. It is evident thatms is obtained by multiplying the statis-
tical segment lengthA by the molecular mass per unit length
ML. The values ofA are determined for all these systems of
Fig. 4 from the viscometric results obtained in the molecular
mass region above this crossover point, using mainly the DB
equation (Table 1) and are very close to the values proposed
in the articles from which the viscometric results are taken.
The numbers of the systems in Fig. 4 correspond to the
systems as given in Table 1. As an example let us indicate
that for nitrocellulose, from Eq. (2) we obtainKu �
1:28 ml g21

; and with F � 0:9 × 1023 (from Eq. (4) with
a� 0:79� Eq. (3) givesA� 334 �A; Penzel and Schultz
[33,34] give A� 332 �A and Ullman [35] calculates a
value for the Kuhn statistical segment of this polymer
equal to 310 A˚ .

The second crossover point does not have any specific
physical meaning but the relation (5) can be used as a guide
because it provides for every worm-like polymer–solvent
system the number of statistical segments at which we have
the onset of power law. Moreover this study clearly shows that
flexible and rigid polymers behave similarly, on the contrary to
what we observe in the first crossover point, if the chain
length is expressed by the number of the statistical segments.

2.5. Region III (molecular mass above the second crossover
point or region of power law)

In this region of molecular mass the chains of worm-like
polymers consist of more statistical segments thanN 0c and
we have a complete excluded volume behavior. The

A. Dondos / Polymer 41 (2000) 4607–46164612

Fig. 5. SFB representation (Eq. (6)) for the systems: (A) PPDP–m-cresol [21]; and (B) PPDP–EPCH [21].

Fig. 6. Variation of 1=�h� versus 1=M1=2 (DB representation, (Eq. (2)) for the
systems: (A) PPDP–m-cresol [21]; and (B) PPDP–EPCH [21].



exponent of the MHS equation, for all the investigated
worm-like polymer–solvent systems, is lower than 0.8.

In order to obtain the statistical segment length of worm-
like polymers in this region we can use the Yamakawa–
Fujii [5], the Bohdanecky [15] and the Dondos–Benoıˆt
[17] methods. The values ofA obtained with these three
methods lie very close to one another and they are very
close to the values obtained by optical methods [36].

In our previous works [1,13,16] we have shown that when
the fractions of a worm-like polymer consist of a great number
of statistical segments�N . N 0c� or when we are in the region
of the power law (named now region III) we can also apply the
Stockmayer–Fixman–Burchard (SFB) equation [37,38],

�h�=M1=2 � Ku 1 0:51FBM1=2 �6�

The values ofKu obtained by plotting�h �=M1=2 versus
M1/2 give a value forA from Eq. (3) usingF from Eq. (4),
which is very close to the value obtained from the above
mentioned three other methods. Let us consider here the
viscometric results obtained from the fractions of poly(phthal-
oyl-trans-2,5-dimethylpiperazine) (PPDP) in solution inm-
cresol and EPCH [21], according to the SFB and DB
equations. In Fig. 5 we present the application of SFB equa-
tion and in Fig. 6 we present the DB equation (Eq. (2)). With
these two representations we observe a very clear crossover
phenomenon for the two PPDP–solvent systems. In the case
of m-cresol the crossover phenomenon appears at a mole-
cular mass equal to 27 000. At the same molecular mass we
observe the crossover point in the MHS representation
(Fig. 3, curve A).

Extrapolating the straight lines obtained forM . M 0
c (or

N . N 0c� in the SFB representation toM � 0 and from the
slopes of the straight lines obtained also forM . M 0

c in the
DB representation we obtain about the same values forKu .
More precisely, from the SFB representation we obtain
Ku � 0:38 in m-cresol (Fig. 5, curve A) andKu � 0:205 in
EPCH (curve B) while from the DB representation we
obtain Ku � 0:4 in m-cresol (Fig. 6, curve A) andKu �
0:21 in EPCH (curve B).

In the molecular mass region below the second crossover
point or in region II, the SFB method is no longer valid. The
values ofKu are very low: about 0.06 inm-cresol and 0.04 in
EPCH (Fig. 5). On the contrary, the straight lines in the DB
representation in the same molecular mass region give
values forKu in m-cresol and EPCH which when introduced
in Eq. (3), with the corresponding values ofF in this mole-
cular mass region, give the same values forA with the
values obtained forM . M 0

c: More precisely, we obtain
for M . M 0

c in m-cresol, as we have already mentioned,
Ku � 0:4 (Fig. 6) and withF � 1:29× 1023 (exponenta
of MHS equation equal to 0.675), we finally obtain a
value for A equal to 60 A˚ . For M , M 0

c we obtain in the
same solventKu � 0:2 (Fig. 6) and withF � 0:63× 1023

�a� 0:92� the value ofA is equal to 61 A˚ . These values are
comparable to the values ofA proposed in the article from
which the viscometric results are taken�A� 64 �A� [21].
This result indicates the validity of the DB equation in
both II and III molecular mass regions.

2.6. A new relation between [h ] and M for the worm-like
polymers

Combining relations derived from the blob theory [39],
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Fig. 7. Variation of�h�=M1=2 versusM3n21:5 (Eq. (8)) for the systems: (A) PPDP–m-cresol [21]; (B) CTDC–NMP [22]; and (C) PtBS–cycl. [44]. The arrows
indicate the molecular mass corresponding to the characteristic number of statistical segmentsN 0c (see Table 1).



equation of Han [6, Eq. (1)], and the two parameter theory
[40] �a3

h � �h�=KuM
1=2�, we have proposed a relation

between [h ] and M, in the case of flexible polymers,
which permits the determination of their unperturbed
dimensions especially in the very high molecular mass
region in which the SFB equation is no longer valid [45].
Using a similar procedure we have obtained for the worm-
like polymers, the following relation from which we obtain
their unperturbed dimensions parameterKu [1]

log Ku � log K 1 2B log ML 2 log C 2 �2=3�B log F

1 2 �2=3�B �7�

In this equationK is the MHS constant,C is equal to
�4�1 2 n��2 2 n��=��2n 1 1��n 1 1�� andB is equal to 3n 2
1:5 wheren is the excluded volume index (3n 2 1� � a;
where a is the exponent of the MHS equation). In the
above equation a term equal to2B log �1=Nc�; is omitted
because in the case of worm-like polymers, as we have
shown in our previous article [1] and also at the beginning

of this article we haveNc � 1: The values of the statistical
segment length obtained from the above equation (value of
Ku in Eq. (3)) for a great number of worm-like polymers are
in good agreement with the values obtained by other
methods [1].

Also, starting now from Han’s equation [6, Eq. (1)] and
havinga3

h � �h�=KuM
1=2
; Nc � 1 andN � M=ms (N is the

number of Kuhn statistical segments of the fraction of mol-
ecular massM and ms the molecular mass of one Kuhn
statistical segment) Eq. (1) becomes,

�h�
M1=2 � KuC

M
ms

� �3n21:5

From Eq. (3) we haveKu � A3=2F=M3=2
L and havingms �

AML the above relation becomes

�h�
M1=2 �

A3�12n�CF

M3n
L

M3n21:5 �8�
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Fig. 8. Variation of�h�=M1=2 versusM3n21:5 (Eq. (8)) for the systems: (A) PHIC–hexane [31]; (B) DNA–H2O [41–43]; and (C) nitrocellulose (13.9)–acetone
[33,34] (the arrows as in Fig. 7).

Table 2
Excluded volume indexn , Han’s equation parameterC, Flory’s parameterF , mass per unit lengthML, slope of the straight line obtained applying Eq. (8),
Kuhn statistical segment lengthA from Eq. (8) and Kuhn statistical segment length obtained from other methodsA0, for six worm-like polymer–solvent
systems (PtBS: poly(p-tert-butylstyrene))

System n C F 10223 (c.g.s.) ML (Da Å21) Slope (Figs. 7 and 8) A (Å) A0 (Å) References

PPDP–m-cres. 0.558 0.77 1.29 28.5 0.072 55 58–64 [21]
CTDC–NMP 0.553 0.79 1.36 108 0.0415 162 156 [22,23]
PtBS–cycl. 0.573 0.72 1.1 64 0.008 43 42 [44]
PHIC–cycl. 0.590 0.665 0.95 71 0.104 700 708–840 [31]
DNA–H2O 0.575 0.715 1.095 195 0.070 1148 1130–1150 [41–43]
Nitrocell.–acet. 0.597 0.64 0.898 57 0.042 300 310–332 [33,34]



Plotting �h�=M1=2 versusM3n21:5 we must obtain a straight
line that goes through the origin and its slope must be equal
to A3�12n�CF=M3n

L . Knowing from the MHS representation
the value ofa we also know the value ofn , �3n 2 1� a�;
the value ofC and we can also calculate the value ofF from
Eq. (4). So we can calculate, from the slope of the straight
line obtained plotting�h�=M1=2 versusM3n21:5

; the Kuhn
statistical segment length,A, of the worm-like polymers.
It is evident that we must know the value ofML of each
polymer.

In Fig. 7 we present the application of Eq. (8) for three
worm-like polymer–solvent systems. We can see that we
obtain straight lines that go through the origin. The same
results are obtained with other three worm-like polymer–
solvent systems given in Fig. 8. From the slopes of the
straight lines presented in Figs. 7 and 8 we calculated the
value of A of the worm-like polymers and the results are
given in Table 2. We must note that the value ofML is
introduced in Eq. (8) in Da cm21 and that the value ofA
is obtained in cm but in the following is given in A˚ . In Table
2 we give also the values ofA obtained from the authors of
the articles from which the viscometric results are obtained
as well as the values obtained using the DB equation on
these viscometric results. The arrows in Figs. 7 and 8 indi-
cate the molecular mass corresponding to the second cross-
over point (N 0c Table 1, Fig. 4). For DNA, which is not
treated in Table 1 and Fig. 4, the value ofN 0c has been
calculated now from Eq. (5) (a� 0:725; N 0c � 26:8; M 0

c �
6 010 000; M 0 3n21:5

c ; 6 010 0000:225� 33:5; arrow in Fig. 8).
As we can see in Table 2 the values ofA obtained using

Eq. (8) are in good agreement with the results based on other
methods. This result clearly indicates the validity of Eq. (8)
obtained from the combination of relations that are derived
from the blob theory and the two parameter theory. The
validity of Eq. (8) also confirms the validity of the two
other considerations which we have taken into account in
order to obtain this equation, i.e. the dependence ofF on the
quality of the solvent (Eq. (4)) and the value of the number
of Kuhn statistical segments at the onset of excluded volume
behavior�Nc � 1�:

We consider that Eq. (8) is preferable to Eq. (7) because
(a) it is of a simpler form; (b) it describes a straight line
passing through the origin, thus allowing the determination
of parameter values with a smaller number of experimental
points; and (c) it needs only one parameter of the MHS
equation.

3. Conclusions

Treating the viscometric results of a great number of
worm-like polymer–solvent systems we have shown that
the entire domain of molecular masses can be divided into
three regions. These regions are separated by two crossover
points that are manifested by plotting the variation of the
molecular dimensions of the chains as a function of their

molecular mass. In the molecular mass region below the first
crossover point (region I) the chains of the rigid polymers
present a conformation of a rod-like cylinder and their
length is lower than the length of one Kuhn statistical
segment. When the molecular mass becomes equal to the
mass of one Kuhn statistical segment we observe the first
crossover point, which corresponds to the appearance of
excluded volume behavior [1,7]. Between this first cross-
over point and the second crossover point, which appears
when we reach the complete excluded volume behavior, we
have a molecular mass region (region II) where we have a
non-complete excluded volume behavior. Above the second
crossover point the worm-like polymers present a complete
excluded volume behavior (region of power law, region III).

The behavior in solution of worm-like polymers is similar
to the behavior of flexible polymers, especially in the region
III. As we have seen in Fig. 4 the worm-like and the flexible
polymers reach this region when their chains contain the
same number of statistical segments, if the quality of the
solvent is the same for these polymers. Moreover, in region
III equations relating the intrinsic viscosity to the molecular
mass of flexible polymers are valid for the worm-like poly-
mers as well (equations DB and SFB).

The proposed equation for the determination of the statis-
tical segment length of the worm-like polymers, Eq. (8),
derived from relations proposed originally for the flexible
polymers indicates also the similarity in the solution behavior
between flexible and worm-like polymers. Moreover, the
validity of this equation which is derived by combining the
equations proposed by the two-parameters theory and the blob
theory, indicates that these two theories do not conflict.

The existence of an important draining effect (drastic
variation ofF with the quality of the solvent) in the case
of worm-like polymers and the manner with which we
approach the power law in the MHS representation are
two differences observed between these polymers and the
flexible polymers.
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